GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

Generating Stable, Building Block Structures from
Sketches

Matthew Stephenson, Jochen Renz, Xiaoyu Ge, and Peng Zhang

Abstract—This paper presents a structure generation algo-
rithm which converts rough human drawings into stable struc-
tures comprised of rectangular blocks, suitable for physics-based
2D environments. Generating viable structures for a physics-
based environment imposes many additional requirements above
those of most traditional sketch-based domains. Our method
is sophisticated enough to deal with these requirements, while
still ensuring that the generated structure accurately represents
the original sketch. We describe and implement a framework
for this process, allowing inexperienced users to create complex
structures with ease. Multiple structure possibilities are identified
for a single drawing and are then compared based on their
similarity to the original sketch using a heuristic value. We
evaluate our approach by investigating its ability to replicate
structures for the video game Angry Birds, based on human
drawn sketches of the original levels.

I. INTRODUCTION

Al assisted generation of digital content with minimal or
reduced human input, also known as procedural content gen-
eration, has become an increasingly popular area of research
over the past few years [1]. This process allows for the fast
and efficient generation of suitable content, without the need
for experienced designers or developers. However, the methods
implemented for achieving this typically have a very limited or
unintuitive range of options for designer control [2], [3]. This
makes it difficult for the average user to design and create
their own content. One possible solution to this problem is to
implement a mixed-initiative generator, where Al techniques
help assist the user in the content generation process (i.e. user
and system have a near-equal contribution) [4].

A common method for allowing users to interact with
a mixed-initiative generator is via a sketch recognition and
understanding system, where hand drawn sketches are passed
into the generator as inputs [5]. Ideas for digital content
typically start with a concept drawing, which then must be
precisely coded into the digital environment by hand. This
process is time consuming, and constraints or limitations of
the environment that were not previously considered must be
manually checked. The use of a sketch-based interface for
the automatic generation of content, referred to in this paper
as sketch-based generation, allows users to design and create
their own content quickly and intuitively, without the need for
expert domain knowledge or programming skills.

Previous applications and research around sketch recogni-
tion has been conducted in many different areas, including de-
signing analog electrical circuits [6], creating UML diagrams

M. Stephenson, J. Renz, X. Ge and P. Zhang are with the Research School
of Computer Science, Australian National University, Canberra, A.C.T. 0200,
Australia, e-mail: (matthew.stephenson@anu.edu.au).

[7], drawing chemical molecule structures [8], and solving
physics-based problems [9]. Several algorithms have also been
proposed to generate virtual content for video games from 2D
human sketches. These include designing maps for strategy
games [10], levels for 2D platformers [11], building 3D game
worlds [12], modelling human characters [13], and creating
virtual garments [14]. However, none of these methods have
had to consider whether or not the result is viable within a
realistic physics-based environment. This type of environment
places additional restrictions on the generated content, such
as a limited number of resource options or requiring that
the result be stable. Several previous programs for creating
content within a physics-simulation have been developed, such
as CogSketch [15], SketchyDynamics [16] and PhysicsBook
[17], but these also make no attempt to fix the generated
content and simply recreate exactly what the user has drawn.
In this paper we present an approach to generate stable and
viable structures for a 2D physics environment, based solely
on human sketches. These input sketches comprise of multiple
axis-aligned, rectilinear (aka. orthogonal) polygons, that can
be placed next to and on top of each other. The generated
output structures based on these sketches are created using
rectangular building blocks, with a pre-set number of different
block dimensions (shapes) available. Each generated structure
should satisfy the requirements of the environment (stable on
flat ground, no overlapping blocks, etc.) while representing
the original sketch’s design as closely as possible. Unlike
prior sketch-based interfaces for creating content in physics-
simulations, our proposed generation process does not merely
replicate the design of the input sketches, but also ensures the
physical viability and constraints of the generated structure are
maintained. We believe that this task is sufficiently complex
and novel to be worthy of investigation, posing many different
challenges for the areas of physical and spatial reasoning.

A. Angry Birds

The specific example we will use to demonstrate the benefit
of solving this problem is for the popular video game Angry
Birds. This game utilises a 2D physics-based environment and
its levels often consist of one or more structures composed
of multiple rectangular blocks, providing a perfect example
domain to evaluate our approach. Angry Birds has also been
used for multiple Al competitions focused around generating
and solving levels [18]. Multiple level generators for Angry
Birds currently exist, the latest of which offer several options
for designer influence and requirements [19], [20]. However,
the level of control that designers have over the generated

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

content is still very minimal, offering little more than some
simple specifications such as the size of the structures or the
number of block shapes available.

Another recent level generation paper for Angry Birds
proposed a mixed-initiative generation system that allows the
user to design structures using a built-in drawing tool [21].
However, this system is exceptionally primitive in its current
form, allowing users to only draw blocks using a predefined
grid and requiring that all blocks have either a width or height
of exactly one grid unit. This process essentially corresponds
to users selecting which squares of the gird they want filled
using straight lines of a fixed width, rather than sketching the
whole structure’s design in the traditional sense, which results
in structures that are hugely simplified compared to more
traditional Angry Birds levels. This method also offers no real
analysis on the stability of the generated structures, leaving
most of this to the human designer. Overall this approach can
only be loosely called a sketch-based generation method, and
can only create vastly simplified versions of structures that are
atypical for Angry Birds.

The sketch-based generation system proposed in this paper
allows for much greater designer control in terms of the look
and overall aesthetic of the desired structures, whilst still
ensuring that the generated levels are viable within the game’s
physics engine. We demonstrate that our generation method
provides a fast and effective way of developing level proto-
types, and that even inexperienced users can create detailed
and personalised structures with ease.

II. STRUCTURE GENERATION APPROACH

In order to generate stable, building block structures based
on human drawn sketches, several different sub-problems must
be solved. Each of these can be treated as a separate task
with multiple possible approaches and solutions. This section
provides detailed descriptions and possible solutions for each
of these problems, as well as other additional features that
either improve the end result or reduce the generator’s runtime.

1) Process Overview: We first provide an overview of the
entire generation process from original sketch to final gener-
ated structure. 1) Identify separate polygons within the input
sketch and split any non-rectangular polygons into rectangular
components. These rectangles are then combined to make a
full structure. 2) This structure is tested for stability, and
suitably adjusted if need be. 3) The rectangles within the
structure are grouped based on their position, size and shape,
which helps improve the generation process. 4) Composite
block shapes are created by combining multiple regular blocks
together. 5) All rectangles are scaled to be closer in size to
the available block shapes. 6) The final generated structure is
recursively built one block at a time, by selecting for each
scaled rectangle the block shape that is closest to its size
and aspect ratio. If when selecting a block shape any of
several requirements are violated (structure is unstable, blocks
overlap, etc.) then the block is either moved or swapped out
for a different block shape. This continues until a structure
that satisfies all requirements has been generated. 7) The
generated structure is evaluated using a similarity heuristic

calculation between itself and the original sketch. Multiple
different structures can often be created for the same sketch by
changing certain generation parameters (e.g. scaling method,
structural requirements, block adjustment options), which can
then be ranked based on their similarity heuristic values.

A. Polygon Splitting under Stability

Problem: Split a collection of sketched, roughly axis-
aligned, rectilinear polygons into a collection of rectangles
that mimics the shape of the original input sketch; with
an optimisation criterion that the structure created by these
output rectangles be stable on a flat horizontal plane under
the influence of gravity.

The first problem that we must solve is that of splitting
polygons within our input sketch into rectangles. To extract
the properties of each polygon from the sketch, we take
advantage of the fact that any collection of non-intersecting
rectilinear polygons can be uniquely determined based on its
vertices [22]. It is therefore possible to recreate the shape of
each polygon by simply identifying corners within the input
sketch. For our program we found that the Shi-Tomasi corner
detection algorithm worked well enough [23], but other more
sophisticated methods are available [24], [25], [26], [27]. Note
that if all polygons within the sketch are already rectangular,
then a simple MBR (minimum bounding rectangle) detection
algorithm is sufficient to identify the properties of each. We
now attempt to replicate the shape of each identified polygon
using only rectangles.

Several papers have proposed solutions to this problem of
partitioning rectilinear polygons [28], [29], [30], [31], [32],
[33], but these methods have different optimisation criteria
(minimum number of rectangles, polynomial time approxima-
tion, maximum smallest rectangle dimension, minimum stab-
bing number, etc.) and do not take the physical nature of our
scenario into account. We therefore propose a new algorithm
for polygon splitting under stability (PSSA). Accompanying
diagrams for each step of PSSA are shown in Figure 1.

1) Polygon Splitting under Stability Algorithm (PSSA):

(a) Take as input a collection of roughly axis-aligned, recti-
linear polygons, orientated such that the vertical axis is
aligned with the gravitational force.

(b) Identify all corner positions P within the input using a
chosen corner detection algorithm (e.g. Shi—-Tomasi).

(c) o For every point P; in P, create an associated set S; of

all points in P that have x-axis location values within
a certain number of pixels n of P;’s x-axis location.
« If any two sets .S; and S; share a common point (S; N
S; # 0), merge them together to make a new set .S;;
that is associated with both ¢ and j (S;; < S; U S;).
« For every point P; in P, make the x-axis location value
for P; equal to the average x-axis location value of all
points in its associated set.
« Repeat the above three steps for y-axis location values.
This step is done to account for any slight imperfections
in the sketch, essentially making sure that all polygons
are perfectly axis-aligned and rectilinear.

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

0O B .II

(

<)

] [
0 o

(e)

Sl

:I_l

———]

T

—

() (2)

(b

® @

Fig. 1: Polygon splitting under stability: (a) an example polygon sketch, (b) corners detected using our chosen algorithm (red
dots), (c) corners with similar x-axis or y-axis location values are made the same, (d) horizontal and vertical edges identified
between detected corners, (e) ray casting used to identify concave corners (red dots), (f) horizontal lines added at concave
corners, (g) rectangles that can be formed using these lines / edges are identified, (h) ray casting used to identify and remove
any rectangles that are actually holes. Figure (i) shows the result of PSSA on a rotated polygon sketch, whilst (j) shows the
negative result of using the same split lines for both the non-rotated and rotated input sketch (approach used by prior methods).

(d) From these adjusted corner positions P we identify all
horizontal and vertical edges E' that connect them, using
the method described in [22].
Ray casting is used to identify corners in P which are
concave (vertex points with an interior angle of 270
degrees) based on the number of edges in E that the
ray intersects.
Additional horizontal lines are added to E at each
concave corner in P. These additional horizontal lines
originate from each concave corner in both the left and
right directions, stopping once they intersect another edge
in E.
(g) Based on this collection of lines £ we can create a
collection of possible rectangles R that they can form.
(h) Ray casting used to remove any rectangles in R that are
not solid regions (i.e. holes within the polygon).

(e)

®

By following the steps outlined in PSSA we can divide up
a sketch of one or more axis-aligned, rectilinear polygons into
a collection of solid rectangular regions (R) that accurately
represents its shape. Due to the fact that only horizontal lines
are added to the sketch in step (f), we can guarantee that
every rectangle created by PSSA touches another rectangle
on at least one of its horizontal edges. This guarantee heavily
increases the likelihood of R being stable, as it reduces the risk
of certain rectangles having none or minimal support. This also
means that the same polygon may be split differently based on
its orientation, which is not the case for other prior methods.
Figure 1 (i) represents the result of performing PSSA on the
same polygon sketch from Figure 1 (a) but rotated 90 degrees.
Even though Figure 1 (i) contains more rectangles than if we
used the same split lines from the original non-rotated sketch,
see Figure 1 (j), the result is far more stable (all rectangles
supported from below). This demonstrates how important it

is for an input sketch to be split differently based on its
orientation, which is something that other splitting methods
do not do.

In all subsequent sections of this paper, the term block
will be used to refer to a solid rectangular region, and a
collection of one or more axis-aligned, rectangular regions will
be referred to as a structure.

B. Stability Analysis / Adjustment

Problem: Estimate the stability of a structure that is resting
on a flat horizontal plane under the influence of gravity, and
if the structure is unstable propose a modification that makes
it stable.

Once all the rectangles (blocks) from our input sketch
have been confirmed, we next test for structural stability.
Determining local stability for each block can be calcu-
lated quickly based on qualitative stability relations from
the extended rectangle algebra (ERA) [34], but using this
alone often results in many unstable structures being falsely
classified as stable and vice versa. The actual stability of a
given structure can be calculated exactly, but only if all the
relevant physics parameters of the involved objects are known
(mass, shape, density, friction, mass distribution, etc.) [35].
In addition, this calculation often takes much longer than
qualitative approaches and provides no guidance as to how
to correct or adjust an unstable structure. Using a qualitative
stability analysis approach allows us to estimate the stability
of a structure much quicker, whilst sacrificing some accuracy.

1) Formal structure representation: Based on our input
structure we can construct a labelled directed graph where
there is a node NV; for each block B; within our structure and
directed edges to specify supporting relations between two
blocks. We call this the support graph (SG) of a structure. If

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

() (b (©

Fig. 2: Original sketch (a), sketch after polygon splitting (b),
and the adjusted sketch after stability analysis (c).

the top horizontal edge of a block B; is touching the bottom
horizontal edge of block Bs (i.e. By is resting on top of By),
then SG contains an edge pointing from Ny to Ns. For the
sake of our definitions, the ground that a structure is resting
on can simply be taken to be another, albeit very large, block
(i.e. structure is resting on top of a ground block).

Definition. (Supporter, Support Depth, Supportees, Direct
Supporter, Direct Supportees, Support Area): Given a support
graph SG, if there exists a path from N; to Nj, then block B;
is a supporter of block B; (B; supports B;). Support depth
SD(N;, N;) is the length of the shortest path from N; to N;. A
direct supporter of a block Bj is a block B; where SD(N;, N;)
= 1. The supportees of block B; is the set of all blocks that
B; is a supporter of. The direct supportees of block B, is the
set of all blocks that B; is a direct supporter of. The support
area for a block B; is the horizontal interval between (and
including) its leftmost and rightmost direct supporters.

Using the example structure shown in Figure 2 (b) to help
reinforce these definitions, Block C is a direct supporter of
block D, an (indirect) supporter of block E, a direct supportee
of block B, and an (indirect) supportee of block A.

Each of these definitions can also be extended to apply to a
collection of blocks rather than just a single block. In this case
the output is equal to the combined outputs when the definition
is applied to each block within the collection, excluding blocks
in the output that are themselves members of the collection
being queried. (i.e. if Q = [A, B, C], then Supporters(Q) =
[Supporters(A) U Supporters(B) U Supporters(C)] — Q)

2) Prior qualitative methods: There are currently two main
qualitative methods which test for stability in 2D structures
composed of multiple rectangles. The first method tests the
stability of a structure by iteratively calculating the mass centre
for a set of blocks from top to bottom, and checking if the
vertical projection of this falls into the set of blocks’ support
area [36]. The second method determines structural stability
by taking each block within the structure and its supportees
as a substructure, and testing whether the vertical projection
of its mass centre falls into the substructure’s support area
[37]. When applied to structures containing only axis-aligned
blocks, it turns out that both methods perform exactly the same
calculations but in a different order. These methods have a
critical weakness however, in that all supporting blocks for
the queried block’s set of supportees are considered when
calculating the supporting area. This assumption that all blocks
in a set are supported equally by all supporting blocks often
results in unstable structures being falsely classified as stable,
such as the structure as shown in Figure 2 (b). In this example,

Algorithm 1 Stability Test

1: for all B in StructureBlocks do

2: Z <« [B]

3: X <« [BU Supporters(B) U Supportees(B)]

4: for all S in Supportees(B) do

5: if all Supporters(S) in X then

6: Z+—ZUS

7 end if

8: end for

9: if (VPMC(Z) doesn’t fall into SupportArea(B) then
10 P + point in SupportArea(B) closest to VPMC(Z)
11: if VPMC(Z) is left of P then

12: A < area right of P

13: end if

14: if VPMC(Z) is right of P then

15: A < area left of P

16: end if

17: for all N in Supportees(B) ¢ Z do

18: if IV overlaps A then

19: Z <+ ZUN
20: end if
21: end for
22: if (VPMC(Z) doesn’t fall into SupportArea(Z) then
23: if VPMC(Z) is left of P then
24: Return False > B is unbalanced at point P (left)
25: end if
26: if VPMC(Z) is right of P then
27: Return False > B is unbalanced at point P (right)
28: end if
29: end if
30: end if
31: end for

32: Return True

block F is only a supporter of block E, but is also included
when determining if blocks B, C and D are stable using these
prior analysis methods.

3) Proposed algorithm: We therefore propose a new qual-
itative stability test that is able to give a better approximation
of stability compared to those previously described. For this
algorithm, we assume that the densities of all blocks are
uniformly distributed. This method does not produce perfect
results, as qualitative approaches can only ever provide an
estimate of stability, but is still able to detect the majority of
unstable cases. This method also provides detailed feedback
as to why a particular structure is unstable, allowing us to
immediately adjust the structure to account for this. Algorithm
1 describes our proposed stability test (Note. The vertical
projection of the mass centre is abbreviated to VPMC).

4) Unstable structure adjustment: Based on the outcome
of this stability test, we can adjust an unstable structure to
make it stable. By ordering the blocks in our input structure
based on the y-axis position of their mass centre, our improved
stability algorithm will return both the highest unbalanced
block (B is unbalanced at point P) and the side of that
block (left or right) that has too much weight on it. An
additional support block is then placed below either the left
or right edge of this unbalanced block, depending on which
side has too much weight. This added block’s width is set to
some default minimum value, and extends downwards until it
reaches another block (or the ground). The stability of the new
structure is then re-analysed, and this process repeats until the

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

structure is deemed stable.

Example. Using the same structure from Figure 2 (b), we
provide a step-by-step example to help explain our structure
analysis / adjustment process:

o Our algorithm first checks the stability of block E. As
block E has no supportees, the set Z simply contains
block E (Z=[E]) (lines 2-8). The vertical projection of
the mass centre of block E falls into its support area
(horizontal interval between blocks D and F) (line 9) so
this block is stable.

o Next we check the stability of block D. Block D has
block E as a supportee, but as block E has a supporter
that is not in X (block F), it will not be added to the
set Z (Z=[D]) (lines 2-8). the vertical projection of the
mass centre of block D falls into its support area (block
C) (line 9) so this block is stable.

« Next we check the stability of block C. Block C has two
supportees, blocks D and E. Block E is not added to the
set Z for the same reason as before, but all supporters
of block D are in X, so it is added to the set Z (Z=[C,
D]) (lines 2-8). The vertical projection of the mass centre
of the set of blocks [C, D] does not fall into the support
area of block C (just block B) (line 9), so potentially this
block is unstable. P is set to the rightmost point in block
B, and A is set to the area left of P (lines 10-16). None of
the supportees of block C that aren’t in Z (only block E
in this case) overlap A, so Z remains unchanged (Z=[C,
D]) (lines 17-21). As the vertical projection of the mass
centre of Z does not fall into its support area (block B)
(line 22), we conclude that the structure is unstable and
that block C is unbalanced on the right side of point P
(lines 23-28).

« Having determined both the highest unbalanced block (C)
and the side of it with too much weight (right) we add
an additional support block below the right edge of block
C, see Figure 2 (c). The stability of this new structure is
then re-analysed, but this time it is found to be stable.

C. Grouping Block Sets

Problem: Define and identify known rules / relations be-
tween blocks or sets of blocks within a given structure based on
their properties, that need to be satisfied during the generation
process.

Now that all blocks have been finalised, we can group
blocks within the structure together based on their position,
size and shape. This reasoning is not essential to the structure
generation process, but can help to significantly improve
its overall speed and accuracy by eliminating unfeasible or
undesirable possibilities early when selecting block shapes.
Two different systems are used to group similar blocks or sets
of blocks together, referred to as the height grouping and shape
grouping methods. Relations within each of these groupings
are also transitive.

Height Grouping Rule: Two sets of blocks are in the same
height group if they share both a direct supporter and a direct
supportee. If two sets of blocks are in the same height group,

then the combined heights of all blocks in each set must be the
same. Using the same example from Figure 2 (b), we can use
this rule to infer that the combined heights of blocks A, B, C
and D, must be the same as the height of block F. By following
this rule, we can significantly reduce the total runtime of our
structure generation process by helping to detect unfeasible
block shape combinations early when selecting block shapes
for our final generated structure (used later in section 2.6).

Shape Grouping Rule: Two blocks (B1 and B2) are in
the same shape group if the following conditions hold:

o Blyiath = B2yiqn (within set error percentage).

e Blycight = B2peignt (Within set error percentage).

« (Bl = B2,) V (Bl, ~ B2,) (within set error percent-

age).

o There are no other blocks between B1 and B2.

(Note. the x-axis and y-axis location values for a block
(B, By) are defined by its mass centre).

Any blocks within the same shape group must have the same
block shape. The shape grouping rule is not as structurally
important as the height grouping rule, but often leads to a
final generated structure that is much closer to the original
sketch (i.e. the shape grouping rule ensures that blocks in our
input sketch which were intended by the drawer to be the
same shape also have the same shape in the final generated
structure).

D. Composite Blocks

Problem: Generate additional composite block shapes
within pre-defined size limits, given a collection of regular
rectangular block shapes.

As well as the regular block shapes that are available, it is
also possible to combine multiple blocks together to create
additional composite blocks with new dimensions. While
initially similar in many regards to the rectangle packing
problem [38], [39], the task of creating suitable composite
blocks for 2D structures has many different considerations.
Unlike traditional packing problems we do not have a limited
number of blocks, only a limited number of block shapes.
Our proposed process for creating different composite block
options, within predefined limits on the maximum width
Widthp,q, and height Height,,,, that the block can have,
is as follows:

Given a collection of N regular rectangular block shapes,
sort them together into a set of groupings G based on their
height. Remove from GG any groupings that contain blocks with
a height greater than Height,,q.. For each grouping G in G
perform the following:

Identify all ordered combinations Cj of blocks within
G, that when placed horizontally next to each other give
a width less than Width,,.,. Each combination Cj; in
C) has three properties, the number of blocks within it
NumberBlocks(Cy;), its total width Width(Cy;), and the
locations of all connection points where one block ends and
the next begins ConnectPoints(Cy;). Remove from Cj, any
combination CY; if there exists any another combination Cy;
where the following is true:

o« Width(Cr;) = Width(Ch;)

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

(- — - —
=001
= = F 1. —]
B = = —— el
et 'g — g -}
& L — I — - ©
(a) Scalemax (b) Scalemid Scalemin

Fig. 3: Three example generated structures created from the
sketch in Figure 1, but using different scale calculations.

o NumberBlocks(Cy;) > NumberBlocks(Cy;)
o ConnectPoints(Cy;) C ConnectPoints(C;)

This removal process eliminates blocks combinations in
(), that are the same width as another combination, but are
guaranteed to be equally or less structurally stable.

For each combination Cy; in C}, perform the following:

1) B=Cy;

2) Dyi 0

3) Add B to the set Dy;

4) Reverse the order of the blocks in C};

5) Add Cj; as a new extra row of blocks on top of B

6) If the height of B is less than Height,,q., Go to step 3

This gives us a set of composite block shapes Dy; for
each combination Cj; in C). Each of these Dj; sets can
then be merged to give a combined set of composite block
shapes Dy for all combinations in Cj. All Dy sets from
each Gy grouping can then be merged to give a final set of
additional composite block shapes D, with dimensions not
possible using regular block shapes alone. Comparing the
generated structures in Figure 3 against the original rectangles
in Figure 1 (h), demonstrates how multiple real blocks can be
used to represent a single sketched block.

Note. In all subsequent sections, the term block shapes
includes both regular and composite block shapes.

E. Block Scaling

Problem: Scale a sketched structure so that it better fits the
block shapes available.

Another problem that must be solved before the final
structure can be generated is how to scale the sketched image
such that the blocks within it are closer in size to the “real”
block shapes available. If the input sketch is too small or too
big, then the closest available real block is likely to always
be the same. Without a fixed point of reference between the
input sketch and the desired generated level, this problem has
no perfect solution. We instead propose five different scale
calculation options, the results of which can then be compared
to determine the best approach:

e Scaleey = Max(SBD)/Max(RBD)

e Scalemin = Min(SBD)/Min(RBD)

e Scalen;q = MidRange(SBD)/MidRange(RBD)
o Scalemean = Mean(SBD)/Mean(RBD)

o Scalemedian = Median(SBD)/Median(RBD)

(SBD = sketched block dimension, RBD = real block
dimension)

In more understandable terms, each scale calculation option
associates one of the rectangle dimensions in the sketch
with one of the real block dimensions available, i.e. us-
ing the Scale,,q; calculation associates the largest rectangle
dimension in our sketch with the largest real block shape
dimension. Using each of these scale options often results in
very distinctive generated structures with different block sizes
and shapes, see Figure 3. These structures can then be ranked
based on their similarity to the original sketch, with further
details on this comparison procedure provided in the Structure
Ranking section.

F. Selecting Block Shapes

Problem: Given a sketched structure with rectangular
blocks of any size / shape, generate a stable and viable
structure using our available block shapes that is similar in
design to the original sketch.

Having described all the necessary components of our gen-
erator, we are now ready to start generating the final structure.
Given a sketched structure S made of multiple rectangular
blocks, we order the blocks using a bottom-up, depth first
search algorithm (supporters always placed before the blocks
they support). This block ordering (S, Sa,S,) determines
the order in which we select the block shapes for our final
generated structure G. To generate the ith block for G, we
first select the real block shape Shape; (including composite
block shapes) that is closest to the shape of S; (smallest non-
overlapping region) and which hasn’t already been tried for the
current value of G. A new block G; with the shape of Shape;
is then added to G in the same horizontal position as S;, and
is vertically placed on top of its supporters determined by the
support graph of S (due to our prior block ordering these will
already have been added to G). Five requirement checks are
then carried out to make sure that G;’s shape and location are
valid:

e Ry: G; doesn’t overlap another block in G.

e Ry: G satisfies all grouping requirements of S (for both
height and shape groupings).

o R3: The support graph of G is consistent with the support
graph of S (all blocks are supporters / supportees of those
that they are supposed to be).

e R4 Create a new structure J, that contains all blocks
currently in G, as well as any blocks S; in & where
G; is not in G (i.e. blocks already added to G use their
real block shape, blocks that are not yet added to G use
their sketched block shape). Run our previously described
stability test on the structure J, but using the support
graph of S. This stability test must return True (structure
stable).

(Note. even through the support graph of S may not
match the support graph of F, we can still use the support
graph of & for determining supporters, supportees and
support areas when performing our stability test on JF).

o Rs: If Shape; is a composite block shape, then all blocks

that make up G;’s bottom row must be locally stable.

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

Algorithm 2 Selecting Block Shapes

1: GeneratedStructure <

2: for all Block in SketchedStructure do

3: NewBlock <+ Block

4: Shape(NewBlock) < Closest BlockShape(Block)
5: add NewDBlock to GeneratedStructure

6: Altries, A2tries < 0

7: while any (R1, R2, R3, R4, Rs) not satisfied do

8 if Altries < Altriesma. then

9: do adjustment A;

10: else if A2tries < A2tries;q. then
11: do adjustment Ao

12: Altries < 0

13: else

14: do adjustment As

15: Altries, A2tries < 0

16: end if

17: end while

18: end for

19: Return GeneratedStructure

If any of these requirements (R;, Ra, R3, R4, R5) are vi-
olated, then one of three possible adjustment options is per-
formed:

o Aj: Move G; horizontally either left or right by a small
amount.

o Ay: Swap Shape; for the next closest block shape that
has not already been tried for the current G definition
before.

« Ajz: Remove both G; and G;_1 from G (i.e. backtracking).

After carrying out an adjustment (A, A, A3) the structure
requirements (R;, Ra, R3, R4, R5) are re-tested. Adjustment
A; is carried out first, in each direction for several distance
values. Next, adjustment A, is carried out for several different
alternative block shapes. Lastly, if the structure still does not
satisfy our requirements after multiple shape changes and
position shifts, then adjustment Ag is performed. This process
of selecting block shapes, testing structure requirements and
performing adjustments, repeats recursively until either a final
viable structure that satisfies all requirements is generated
or all block shape combinations have been tested (structure
generation not possible). Algorithm 2 provides a summative
description of this block shape selection method.

G. Structure Ranking

Problem: Compare / rank different generated structures
based on their similarity to the original sketch.

As there are several different scaling options available, as
well as other adjustable generation parameters, many different
structures can usually be generated from the same sketch.
Better results can often be achieved by generating multiple
structures and then comparing them to determine which is best.
This selection can be done manually based on user preference,
but can also be done automatically using a similarity heuristic
which measures how similar the generated structure is to the
original sketch (after polygon splitting but before stability
analysis). Four different measures of error are used in this
heuristic calculation:

o Errory.ii, = Average percentage difference between
each block’s generated and sketched aspect ratios.

e Errory.. = Average difference between each block’s
generated and sketched areas.

o Errorpesition = Average Euclidean distance between
each block’s generated and sketched locations, relative
to the structure’s centre of mass.

e Erroryqdeq = Weighted sum of the areas of all blocks
added during stability analysis.

o SimilarityHeuristic = —(ETTor atio * ErTorarea *
Errorpesition) — ETroredded

(Note. Both the sketched and generated structures are first
scaled so that their total areas equal some arbitrary value).

Note that this similarity heuristic value is not normalised. In
order to normalise this heuristic we would require a worst-case
example to base the similarity value of -1 on, but it is not clear
what a worst possible sketch would look like without setting
some arbitrary bounds on the size and number of blocks for
a generated structure.

A full quantitative test for stability is also conducted and if a
structure is found to be unstable it is immediately rejected, thus
guaranteeing that all generated structures are stable. Please
note that the stability of generated structures is not verified
using the Angry Birds physics engine, due to inconsistencies
with its internal physics calculations that can cause stable
structures to collapse for no logical reason.

III. EVALUATION

In order to evaluate our proposed generation algorithm,
we investigated its ability to create levels for the video
game Angry Birds based on human sketches. As previously
mentioned, this game uses a suitable 2D physics engine and
its levels often consist of one or more structures made from
multiple rectangular blocks, with eight different block shapes
available in the game. All experiments were performed on an
Ubuntu 64-bit desktop PC with an i7-4790 CPU and 16GB
RAM.

A. Experimental Results

1) Stability Analysis Comparison: We first compared the
accuracy of our new qualitative stability analysis method
against the two main state-of-the-art techniques [36], [37].
This was done by generating 1000 random axis-aligned,
rectilinear polygons using the approach described in [40].
Each of these polygons was then divided into rectangles using
our polygon splitting algorithm and the subsequent structures
analysed by all three stability methods. The exact stability of
each generated structure was calculated using the algorithm
described in [35]. Out of the 1000 polygons, 632 were stable
whilst 368 were unstable. Neither our proposed method nor
those previously described gave any false negatives (classified
unstable but actually stable). However, both older methods
each had 44 false positives (classified stable but actually
unstable) whilst ours had only 18. This result indicates that
our proposed stability analysis method performs significantly
better than previous techniques when applied to our problem,
and is able to accurately detect the vast majority of unstable

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

]
e =

=2 1 ==
() (b)
Fig. 4: Original sketch (a), generated structure (b).

structures. In all 350 cases where our stability analysis method
correctly detected an unstable structure, it was also able to
successfully adjust the structure to make it stable.

2) Similarity Heuristic Verification: We also evaluated our
proposed similarity heuristic to determine whether it provides
a good measure of structural similarity between a sketch and
a generated structure. We recruited 15 participants, 11 male
and 4 female with an average age of 25.1, and asked each to
draw 6 axis-aligned, rectilinear polygons of any design they
liked using a simple pen and paper interface. These drawings
were then scanned and our proposed generator used to create
five different Angry Birds structures for each sketch, using
our five different scaling calculations. These structures were
then ranked by both the user and our similarity heuristic. The
average Spearman’s rank correlation coefficient over all 90
sketches was 0.834, indicating that our heuristic value accu-
rately measures perceived similarities between sketched and
generated structures. Most participants were also extremely
impressed by how accurately their original sketch could be
represented within Angry Birds. Many commented on the
speed with which structures were generated relative to the time
taken to draw them, and also on the stability corrections made
to fix any unsupported blocks. Figure 4 shows an example
sketch and generated structure from this experiment. Out
of the 90 structures generated, only one was found to be
unstable during quantitative stability analysis, and only in a
minor part of the structure. The average generation time for
each structure was 7.34 seconds, the average time participants
took to draw each structure was roughly 1-2 minutes, and
the average similarity heuristic value for the closest (best)
generated structure was -21.55.

3) Recreating Original Angry Birds Levels: To evaluate
the overall performance of our entire generator, we investi-
gated its ability to accurately replicate original levels from
Angry Birds, based on human sketches of these same levels.
Five different levels were selected from the “Poached Eggs”
episode, specifically levels 1, 9, 13, 16, and 21, each of which
contains a single complex structure. We collected sketches for
each of these structures from 6 different participants, 4 male
and 2 female with an average age of 22.8, giving a total of
30 structure sketches. Using our proposed similarity heuristic,
we compared each sketch against both its closest generated
structure and the original level it was based on. This allows
us to compare how accurately our generation algorithm can
replicate the sketched structure, compared to how closely the
sketch resembles the original level. The average similarity
value between each sketch and the level generated from it

Level # 1 9 13 16 21
Original —58.4 | =775 | —23.6 | —27.7 | —67.0
Generated —13.1 | —15.9 | —14.7 | —8.58 | —18.1

TABLE I: Average similarity heuristic values when comparing
human sketches against the original and generated structures.

was -14.08, whilst the average similarity value between each
sketch and the original level it was based on was -50.84. A
breakdown of the average similarity heuristic scores for each
level is displayed in Table 1. From these results we can see that
our generator is able to replicate each sketched structure much
closer than the average user can draw that same level, despite
the fact that generating a structure from a sketch is clearly a
more cognitively demanding task than simply drawing a level.

The correlation coefficient for the similarity values between
each sketch and both its original and generated structures is
0.477, indicating that there is a moderate positive relationship
between these similarity scores for each level. This is probably
because sketches that are further away from the original
level are less likely to fulfil our generation requirements (e.g.
overlapping blocks or unstable). Our generator will attempt to
correct these issues by adjusting the structure, resulting in a
worse similarity heuristic value. Figure 5 provides some exam-
ples from this experiment. Most participants were impressed
with the generator’s performance, although some with less
precise sketches commented on the differences between the
generated structures and what they were actually intending to
create. All generated structures were determined to be stable
using quantitative stability analysis. The average generation
time for each structure was 6.51 seconds, and the average
time participants took to draw each structure was roughly 3-4
minutes.

When examining these results, please be aware that sim-
ilarity heuristic values are only intended for comparing dif-
ferent generated structures based on the same input sketch to
determine which is the closest, and should not be compared
between different original structures (i.e. the similarity heuris-
tic for a sketch based on a specific structure should not be
compared against the similarity heuristic for a sketch based
on a different structure).

B. Discussion and Future Work

The results of our evaluation demonstrate that our pro-
posed generator can recreate both new and existing struc-
tures based solely on 2D human sketches, with a level of
accuracy often far closer than a typical user could sketch.
The spatial reasoning performed by our generator guarantees
that all created structures are both stable and viable within
the required environment, whilst still ensuring that the users
design is followed closely. Participants in our experiments
were able to use and understand the sketch-based interface
easily, even if they had never previously played Angry Birds.
Our methodology also possesses a large degree of flexibility,
allowing for the incorporation of new requirements, desirable
qualities or available block shapes when generating structures.

Outside of the obvious application to creating levels for
physics-based games, this work has multiple other uses in a

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES 9

0
L |
g H U 0 HEUD] ME 2 U—_—_“ﬂ D o ﬁ“

Y
R] = L :
i T oI &y
S | e | S
1]] 0 0
| — 8 -
i e D e R =
iﬂ n i} = 0ot 000 -
= LWl 1182) LIS T g B
My | e | 5 0 | e
0o ooo 2.9 28
e ey %g 00 O -
LB | 0 it - | $ 03 | == | wpe
e aeessm | Se=—— | & B
kK MmEEEE [B M- 0 oo | §8 0 @8
goqn 5@
sm@ III TY) nog Ca_! nog “ }l . o
L] i, o) DDMTDJSL\% Lol L) ool Ll | Wi Ll
I% '_Si 0 D '———<’D ‘Li-i‘! = 551 = f - | Faa
S1ERTh | ol 55 15| ATTHRITh | a8k | a2 h
(a) (b) (©) (d (e)

Fig. 5: The original structure (a), the best and worst human sketches (b)/(d), and the closest generated structures from these
sketches (c)/(e)

Row 1 (level 1): Similarity(b,c) = -6.86, Similarity(b,a) = -14.69, Similarity(d,e) = -22.10, Similarity(d,a) = -92.39
Row 2 (level 9): Similarity(b,c) = -13.30, Similarity(b,a) = -17.62, Similarity(d,e) = -18.56, Similarity(d,a) = -127.35
Row 3 (level 13): Similarity(b,c) = -7.41, Similarity(b,a) = -19.55, Similarity(d,e) = -17.45, Similarity(d,a) = -39.48
Row 4 (level 16): Similarity(b,c) = -4.62, Similarity(b,a) = -16.26, Similarity(d,e) = -11.93, Similarity(d,a) = -64.24
Row 5 (level 21): Similarity(b,c) = -8.24, Similarity(b,a) = -12.35, Similarity(d,e) = -35.01, Similarity(d,a) = -82.79

wide variety of different domains and situations. One example Future work for this research would naturally involve ex-
could be in designing real-world structures that must follow tending the range of possible structures that could be gen-
some environmental and building requirements. Our approach erated. Improvements to the generator might allow sketches
allows architects or graphical designers to come up with to contain non-rectangular or angled blocks, and perhaps the
interesting designs, without having to worry about the physical ability to generate full 3D structures using technology such
and engineering side of the construction process [41]. Another as stereoscopic displays and haptic interfaces [42]. These
potential application could be the possibility of a sketch-based additions would require significant alterations to be made to
interface for human-robot communication, that would allow both the stability and polygon splitting algorithms, as well
users to intuitively explain how to complete complex physical as more advanced computer vision techniques for detecting
tasks such as stacking items. The modularity of our method multiple block shapes. Another more conceptual improvement
also allows specific sections to be improved or removed would be to try and understand what certain users are actually
without significantly affecting others. Certain components of attempting to represent in their sketched structures, rather than
our generation process could be integrated with other existing directly replicating what they draw.

sketch-based interfaces for physics simulations, particularly

those focused around cognitive science and education [15].

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

IV. CONCLUSIONS

In this paper, we have presented an approach to construct
formal structure representations of rough human sketches
using a limited number of rectangular block shapes, that
accurately represents the original inputs while also ensuring
that all physical requirements are satisfied. This combination
of procedural content generation with sketch-based interfaces
can help designers focus on what they want to create at a
higher abstract level, without worrying about the physical
requirements and limitations of the environment. This provides
a way for inexperienced users to create their own content
easily, whilst also allowing more experienced designers to
rapidly construct prototypes for their ideas. With the huge
surge in procedural content generation research over the past
few years, it is not only feasible but also essential that more
sophisticated ways to design virtual content are developed. We
are confident that our proposed method represents a significant
step forward in the task of allowing users to easily create
personalised, complex and reliable digital content for physics-
based environments, and presents a substantial contribution to
the field of sketch-based and Al assisted content generation.

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” [EEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 3, pp. 172-186, Sept 2011.

[2] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural
content generation for games: A survey,” Trans. Multimedia Comput.
Commun. Appl., vol. 9, no. 1, pp. 1-22, 2013.

[3] S. Snodgrass and S. Ontafién, “Controllable procedural content gen-
eration via constrained multi-dimensional markov chain sampling,” in
Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, ser. IICAI’16. AAAI Press, 2016, pp. 780-786.

[4] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games: A Textbook and an Overview of Current Research. Springer,
2016.

[5] R. Davis, “Magic Paper: Sketch-understanding research,” Computer,
vol. 40, no. 9, pp. 34-41, 2007.

[6] C. Alvarado and R. Davis, “SketchREAD: A multi-domain sketch
recognition engine,” in Proceedings of the 17th Annual ACM Symposium
on User Interface Software and Technology, 2004, pp. 23-32.

[7]1 T. Hammond and R. Davis, “Tahuti: a geometrical sketch recognition
system for UML class diagrams,” in SIGGRAPH, 2006.

[8] T. Y. Ouyang and R. Davis, “Recognition of hand drawn chemical
diagrams,” in Proceedings of the 22Nd National Conference on Artificial
Intelligence, ser. AAATI’07, 2007, pp. 846-851.

[91 M. Field, S. Valentine, J. Linsey, and T. Hammond, “Sketch recogni-

tion algorithms for comparing complex and unpredictable shapes,” in

Proceedings of the Twenty-Second International Joint Conference on

Artificial Intelligence, ser. IJCAI'11, 2011, pp. 2436-2441.

A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient Sketchbook:

Computer-aided game level authoring,” in Proceedings of the 8th Con-

ference on the Foundations of Digital Games, 2013, pp. 213-220.

G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative

level design tool,” in Proceedings of the Fifth International Conference

on the Foundations of Digital Games, ser. FDG ’10, 2010, pp. 209-216.

R. Smelik, T. Tutenel, K. de Kraker, and R. Bidarra, “A declarative

approach to procedural modeling of virtual worlds,” Computers &

Graphics, vol. 35, no. 2, pp. 352 — 363, 2011.

A. Johnston, G. Carneiro, R. Ding, and L. Velho, “3-D modeling from

concept sketches of human characters with minimal user interaction,” in

International Conference on Digital Image Computing: Techniques and

Applications (DICTA), 2015, pp. 1-8.

E. Turquin, M.-P. Cani, and J. F. Hughes, “Sketching garments for virtual

characters,” in SIGGRAPH, 2007.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

K. Forbus, J. Usher, A. Lovett, K. Lockwood, and J. Wetzel,
“CogSketch: Sketch understanding for cognitive science research and
for education,” Topics in Cognitive Science, vol. 3, no. 4, pp.
648-666, 2011. [Online]. Available: http://dx.doi.org/10.1111/j.1756-
8765.2011.01149.x

A. Costa and J. Pereira, “SketchyDynamics: A library for the develop-
ment of physics simulation applications with sketch-based interfaces,”
International Journal of Interactive Multimedia and Artificial Intelli-
gence, vol. 2, no. 3, pp. 23-30, 2013.

S. Cheema and J. LaViola, “PhysicsBook: A sketch-based interface
for animating physics diagrams,” in Proceedings of the 2012 ACM
International Conference on Intelligent User Interfaces, ser. IUI 12,
2012, pp. 51-60.

J. Renz, X. Ge, R. Verma, and P. Zhang, “Angry Birds as a challenge
for artificial intelligence,” in Proceedings of the 30th AAAI Conference,
2016, pp. 4338-4339.

M. Stephenson and J. Renz, “Generating varied, stable and solvable
levels for Angry Birds style physics games,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG), Aug 2017, pp. 288—
295.

L. N. Ferreira and C. Toledo, “Tanager: A generator of feasible and
engaging levels for Angry Birds,” IEEE Transactions on Computational
Intelligence and Al in Games, 2017.

C. R. F. G. Campos, W. de Oliveira Sa, J. M. G. Teixeira, and L. Lelis,
“Mixed-initiative tool to speed up content creation in physics-based
games,” in Proceedings of SBGames 2017, 2017, pp. 590-593.

J. O’Rourke, “Uniqueness of orthogonal connect-the-dots,” Machine
Intelligence and Pattern Recognition, vol. 6, pp. 97-104, 1988.

J. Shi and C. Tomasi, “Good features to track,” in 1994 Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, Jun
1994, pp. 593-600.

A. Wolin, B. Paulson, and T. Hammond, “Sort, merge, repeat: An
algorithm for effectively finding corners in hand-sketched strokes,”
in Proceedings of the 6th Eurographics Symposium on Sketch-Based
Interfaces and Modeling, 2009, pp. 93-99.

G. Costagliola, M. D. Rosa, and V. Fuccella, “Rankfrag: A machine
learning-based technique for finding corners in hand-drawn digital
curves,” in International Conference on Distributed Multimedia Systems,
2015, pp. 29-38.

M. Shpitalni and H. Lipson, “Classification of sketch strokes and corner
detection using conic sections and adaptive clustering,” vol. 119, 2001.
Y. Xiong and J. J. LaViola, Jr., “Revisiting ShortStraw: Improving
corner finding in sketch-based interfaces,” in Proceedings of the 6th
Eurographics Symposium on Sketch-Based Interfaces and Modeling,
ser. SBIM ’09. New York, NY, USA: ACM, 2009, pp. 101-108.
[Online]. Available: http://doi.acm.org/10.1145/1572741.1572759

S. Durocher and S. Mehrabi, “Computing partitions of rectilinear
polygons with minimum stabbing number,” in Computing and Com-
binatorics, J. Gudmundsson, J. Mestre, and T. Viglas, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 228-239.

J. O’Rourke and G. Tewari, “The structure of optimal partitions of
orthogonal polygons into fat rectangles,” Computational Geometry,
vol. 28, no. 1, pp. 49 — 71, 2004.

V. S. Anil Kumar and H. Ramesh, “Covering rectilinear polygons with
axis-parallel rectangles,” in Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing, ser. STOC *99, 1999, pp. 445-454.
O. Gunther, “Minimum k-partitioning of rectilinear polygons,” Journal
of Symbolic Computation, vol. 9, no. 4, pp. 457 — 483, 1990.

H. Imai and T. Asano, “Efficient algorithms for geometric graph search
problems,” SIAM Journal on Computing, vol. 15, no. 2, pp. 478-494,
1986.

L. Ferrari, P. Sankar, and J. Sklansky, “Minimal rectangular partitions
of digitized blobs,” Computer Vision, Graphics, and Image Processing,
vol. 28, no. 1, pp. 58 — 71, 1984.

P. Zhang and J. Renz, “Qualitative spatial representation and reasoning
in Angry Birds: The extended rectangle algebra,” in Knowledge Repre-
sentation and Reasoning Conference, 2014.

A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3D-based reasoning with
blocks, support, and stability,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

X. Ge, J. Renz, and P. Zhang, “Visual detection of unknown objects in
video games using qualitative stability analysis,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 8, no. 2, pp. 166-177,
2016.

GENERATING STABLE BLOCK STRUCTURES FROM SKETCHES

[38]

[39]

[40]

[41]

[42]

E. Huang and R. E. Korf, “New improvements in optimal rectangle
packing,” in Proceedings of the 21st International Jont Conference on
Artifical Intelligence, ser. IICAI’09, 2009, pp. 511-516.

R. E. Korf, “Optimal rectangle packing: New results.” in Proceedings
of the 14th International Conference on Automated Planning and
Scheduling, 2004, pp. 142-149.

A. P. Tomds and A. L. Bajuelos, “Quadratic-time linear-space algorithms
for generating orthogonal polygons with a given number of vertices,” in
Computational Science and Its Applications — ICCSA, 2004, pp. 117-
126.

J. Michalek, R. Choudhary, and P. Papalambros, “Architectural layout
design optimization,” Engineering Optimization, vol. 34, no. 5, pp. 461—
484, 2002.

P. Onkar and D. Sen, “Controlled direct 3d sketching with haptic and
motion constraints,” International Journal of Computer Aided Engineer-
ing and Technology, vol. 8, p. 33, 01 2016.

